Modern anti-cancer drugs work via tiny molecular motions

Intensity not paramount for physical training during cancer therapy
3 February 2021
Digital health divide runs deep in older racial and ethnic minorities
3 February 2021

Modern anti-cancer drugs work via tiny molecular motions

Modern immunotherapeutic anti-cancer drugs support a natural mechanism of the immune system to inhibit the growth of cancer cells. They dock onto a specific receptor of the killer cell and prevent it from being switched off by the cancer cells. This is a complex molecular process, which is known but has not yet been fully understood. In a molecular dynamics study conducted by the group led by medical information scientist Wolfgang Schreiner and gynecologists Heinz Kölbl and Georg Pfeiler from MedUni Vienna, working with biosimulation expert Chris Oostenbrink from the University of Natural Resources and Applied Life Sciences (Boku) Vienna, has now, for the first time, analyzed this mechanism for the drugs nivolumab and pembrolizumab. It was found that tiny molecular motions are of key significance. The study has been published in the leading journal Cancers.

Comments are closed.